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Abstract

In this paper, we produced a new family of distribution called Gull Alpha Power Family of dis-

tributions (GAPF). A Special case of GAPF is derived by considering the Weibull distribution

as a baseline distribution called Gull Alpha Power Weibull distribution (GAPW). The suitabil-

ity of the proposed distribution derives from its ability to model both the monotonic and non-

monotonic hazard rate functions which are a common practice in survival analysis and reli-

ability engineering. Various statistical properties were derived in addition to their special

cases. The unknown parameters of the model are estimated using the maximum likelihood

method. Moreover, the usefulness of the proposed distribution is supported by using two

real lifetime data sets as well as simulated data.

Introduction

From last few years, researchers made a contribution to the theory of probability so as to

remove some of the limitations of the existing probability distributions. For example, the

Exponential distribution fails to model the monotonic and non-monotonic hazard rate func-

tions, it can only model the constant hazard rate of an object; Gamma distribution can only

model the data with monotonically increasing failure rate. But in practice, various data exists

which follows a non-monotonic hazard rate function, for example, the lifetime of an electronic

device or the accident rate follows a non-monotonic hazard rate function.

It is usual practice to modify the existing probability models so as to model both the mono-

tonic and non-monotonic hazard rate function and also to provide a suitable fit. One such

modification is to produce a generator and then applied to the existing models so as to derive a

new probability model. For example, Al-Aqtash et.al [1] produced a new family of distribu-

tions using the logit function and derived the special case named as Gumbel-Weibull distribu-

tion. Alzaatreh et.al [2] investigated the gamma-X family of distribution and explored the

special case by employing the normal distribution as a baseline distribution. Abid, & Abdulra-

zak [3] Presented a truncated Frechet-G family of distribution. Korkmaz & Genç [4] defined a

generalized two-sided class of probability distribution. Alzaghal et.al [5] worked on the T-X

family of distributions. Aldeni et.al [6] explained a new family using the quantile functions of
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the generalized lambda distribution. For other generators, we refer to see [7–10]. The more

recent modified Weibull distributions are [3], [4], [6–7], [10].

The scope of developing a new family of distribution is to produce a new probability distri-

bution so as to remove some of the difficulties found in the existing probability distributions.

The proposed distribution will not only model the monotonic and non-monotonic hazard rate

function, but also increase flexibility and provided a better fit as compared to other probability

distribution distributions provided in the literature.

In this paper, a new family of distribution is proposed called Gull Alpha Power Family of

distribution. The special case of this family is derived by employing the Weibull distribution

called Gull Alpha Power Weibull distribution (GAPW). GAPW is a modified form of the Wei-

bull distribution which can model the non-monotonic hazard rate shapes. Various statistical

properties have been derived such as hazard rate function, survival function, and moments.

Two real data sets and simulated data are used to check the versatility of the proposed model.

The paper detailed discussion is as follows.

Gull Alpha Power Family (GAPF) of distributions

This section illustrates a new family of probability distributions called Gull Alpha Power Fam-

ily of distributions or in short GAPF. Let Y is a continuous random variable then the cumula-

tive distribution function (CDF) of Gull Alpha Power Family of distribution is defined as

FGAPFðyÞ ¼
aFðyÞ
aFðyÞ

; if a > 1

FðyÞ ¼ FðyÞ; if a ¼ 1

ð1Þ

8
<

:

Where α is being the shape parameter and not be zero. The probability density function

related to the above CDF takes the form

fGAPFðyÞ ¼
logðaÞa1� FðyÞð� f ðyÞFðyÞÞ þ f ðyÞa1� FðyÞ; if a > 1

f ðyÞ ¼ f ðyÞ; if a ¼ 1
ð2Þ

(

Gull Alpha Power Weibull distribution (GAPW)

This section illustrates the special form of GAPF by employing the CDF of the Weibull distri-

bution. The CDF of the Weibull distribution [11] is given by

FWðyÞ ¼ 1 � e� byg ; y > 0 ð3Þ

where β is the scale parameter and γ is the shape parameter.

The Weibull distribution [11] is one of the most important and has been widely used in

many real-world problems. For example, in reliability applications, Keshavan et.al [12] used

the Weibull distribution to analyze the fracture strength of glass data, Fok et.al [13] utilized to

model the failure of brittle materials data, Li et.al [14] by working the failure probability of

concrete components. In Geophysics, Al-Hasan & Nigmatullin [15] modeled the wind speed

data, to model the data related to earthquake [16] considered the Weibull distribution, and the

data concerned with environmental radioactivity was analyzed by Dahm et.al [17]. Tsumoto &

Okiai [18] applied the Weibull distribution to the impulse breakdown of oil-filled cable data.

The Weibull distribution can model only increasing, decreasing or a constant failure rate.

This distribution fails to model a non-monotonic hazard rate function, for example, a failure

rate of the electronic device, accident rate, and infant mortality rate. To achieve this goal,
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researchers have been constructing different modified versions of the Weibull distribution, for

example, Almalki & Yuan [19] presented the New modified Weibull distribution, A new exten-

sion of Weibull distribution is presented by [20], a four parameter Weibull distribution is stud-

ied by Lemonte et.al [21], Gumbel-Weibull distribution was explored by Al-Aqtash et.al [22],

Almheidat et.al [23] investigated the generalized form of the Weibull distribution, Almalki &

Nadarajah [24] by working with the discrete form of the Weibull distribution, and a flexible

Weibull extension was introduced by Bebbington et.al [25].

Let Y is a continuous random variable which follows GAPW distribution then the CDF and

PDF are respectively given by

FðyÞ ¼
að1 � e� bygÞ

a1� e� byg ; y > 0&a;b; g > 0 ð4Þ

f ðyÞ ¼ ae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� byg ð5Þ

The proposed distribution contains three parameters that is β>0 is the scale and α>0, γ>0

being the shape parameters.

The graphical representations of the probability density function and cumulative distribu-

tion function with different values of parameters are given in Fig 1.

The survival and hazard rate function

Let a random variable Y follows GAPW (α,β,γ). Then the survival function of GAPW is defined

as

SðyÞ ¼ 1 � FðyÞ; using expression ð4Þ; we get

SðyÞ ¼ 1 �
að1 � e� bygÞ

a1� e� byg ¼
a1� e� byg

� aþ ae� byg

a1� e� byg

SðyÞ ¼ 1 � ae� byg

ð1 � e� bygÞ ð6Þ

Fig 1. The Pdf and Cdf of GAPW.

https://doi.org/10.1371/journal.pone.0233080.g001
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Similarly, the failure or hazard rate function of GAPW is defined as hGAPWðyÞ ¼
f ðyÞ

1� FðyÞ, trans-

forming Eqs (4) and (5), we obtain the result given below

¼
ae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� byg

1 � ae� byg
ð1 � e� bygÞ

¼ ae� byg

bgyg� 1e� byg 1 �
logðaÞð1 � e� bygÞ

1 � ae� byg
ð1 � e� bygÞ

� �

hGAPWðyÞ ¼ a
e� byg

bgyg� 1e� byg 1 � ae� byg
ð1 � e� bygÞ � logðaÞ � e� byg logðaÞ

1 � ae� byg
ð1 � e� bygÞ

" #

ð7Þ

Fig 2 shows the behavior of the hazard rate function with different parameter values.

The quantile function and median

The quantile function is used to conduct a simulation study as well as to measure the median,

quartile, octile, decile, and percentile. The quantile function is the real solution of a random

variable Y to the expression given as

FðyÞ ¼ m ð8Þ

Fig 2. The hazard rate function of GAPW.

https://doi.org/10.1371/journal.pone.0233080.g002
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Substituting (4), we obtain the result as

að1 � e� bygÞ

a1� e� byg ¼ m; applying log to both sides of the expression

logðð1 � e� bygÞae� byg

Þ ¼ logðmÞ

The simplified form is then given by

byg ¼ log
m
1

aebyg

 !

Using Mathematica software, we get the following result

y ¼
productlog � logðaÞ

m

� �
þ logm

b

0

@

1

A

1
g

ð9Þ

where the product Log function W (Z) is defined as

WðzÞ ¼

X1

n¼1

ð� 1Þ
nnn� 2

ðn � 1Þ!
zn:

For the median, put u = 0.5 in Eq (9).

The rth moments

Let a random variable Y has GAPW distribution with parameters α,β, and γ then the rth

moments (about the origin), say u0r is defined as

u0r ¼ EðyrÞ ¼

Z1

0

yrf ðyÞdy ð10Þ

Recalling (5) we get

¼

Z1

0

yrðae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� bygÞdy ð11Þ

Solving the first part of the above integral form

¼

Z1

0

yrðae� byg

bgyg� 1e� bygÞdy

Let z ¼ e� byg )
dz
dy
¼ � bgyg� 1e� byg ) � dz ¼ bgyg� 1e� bygdy; and

z ¼ e� byg ) logze ¼ � byg ) y ¼
� logz
bg

� �

; 0 < y <1; 1 < z < 0:

PLOS ONE A Gull Alpha Power Weibull distribution with applications to real and simulated data

PLOS ONE | https://doi.org/10.1371/journal.pone.0233080 June 12, 2020 5 / 19

https://doi.org/10.1371/journal.pone.0233080


The above integral takes the following form

¼

Z0

1

yrazð� dzÞ ==
ð� 1Þ

r

ðbgÞ
r

Z1

0

ðlogzÞrazdz;

Finally, we obtained the result as

¼ � að� logðaÞÞ� kr� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ 1; � logðaÞðz � 1Þ

p
j
1

0
ð12Þ

Now to solve the second part

¼

Z1

0

yrae� byg logðaÞbgyg� 1ð1 � e� bygÞe� bygdy

¼ logðaÞ
Z1

0

yrae� byg

bgyg� 1ð1 � e� bygÞe� bygdy

Using the same transformation as earlier, the integral we may write as

¼ ð� 1Þ
rloga

Z0

1

logz
bg

� �r

azð1 � zÞ � dz ¼
ð� 1Þ

r

ðbgÞ
r loga

Z1

0

ðlogzÞrazð1 � zÞdz

We obtained the following result

¼ � að� logðaÞÞ� kr� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ 2; � logðaÞðz � 1Þ

p
j
1

0
; where; logðaÞ 6¼ 0; kr 6¼ � 3; kr 6¼ � 2 ð13Þ

By combining (12) and (13), it’s observed that the rth moment does not exist in general.

Order statistics

Let Y1,Y2,Y3,. . .Yn be ordered random variables from GAPW, then the PDF of the ith order sta-

tistic is given by

fði;nÞðyÞ ¼
n!

ði � 1Þ!ðn � iÞ!
f ðyÞFðyÞði� 1Þ

½1 � FðyÞ�ðn� iÞ
; ð14Þ

Using (4) and (5), the minimum and maximum order statistic of the Gull Alpha Power dis-

tribution are given by

fð1:nÞðyÞ ¼ nðae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� bygÞ 1 �
að1 � e� bygÞ

a1� e� byg

� �n� 1

fð1:nÞðyÞ ¼ nðae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� bygÞ
að1 � e� bygÞ

a1� e� byg

� �n� 1

Parameter estimation

Since the parameters of the probability model are unknown and it is to be estimated using

information obtained from a sample. For a detailed discussion on maximum likelihood esti-

mation, we refer to see [26–28]. In this section, the usual method maximum likelihood esti-

mates are used to find out the estimate of the parameters. Let suppose an independent random

PLOS ONE A Gull Alpha Power Weibull distribution with applications to real and simulated data

PLOS ONE | https://doi.org/10.1371/journal.pone.0233080 June 12, 2020 6 / 19

https://doi.org/10.1371/journal.pone.0233080


sample of size n that is Y1,2Y,Y3. . .Yn is selected from GAPW (α,β,γ). The Likelihood function

is defined as

L ¼
Yn

i¼1

f ðy; a; b; gÞ; Where a;b; and g > 0

Substituting (5) in the above expression, we get

L ¼
Yn

i¼1

ðae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� bygÞ

¼ a
e� b
P

ygi ðbgÞ
n
ð
P

yiÞ
g� 1e� b

P
ygi � a

e� b
P

ygi logðaÞðbgÞnð
P

yiÞ
g� 1
ð1 � e� b

P
ygi Þe� b

P
ygi

logðLÞ ¼ e� b
P

ygi logaþ nlogðbgÞ þ ðg � 1Þlogð
P

yiÞ � b
P

ygi � e� b
P

ygi logðaÞ þ logðlogðaÞÞ

þnlogðbgÞ þ ðg � 1Þlogð
P

yiÞ þ logð1 � e� b
P

ygi Þ � b
P

ygi

logL ¼ 2nlogðbgÞ þ 2ðg � 1Þlogð
P

yiÞ � 2b
P

ygi þ logðlogðaÞÞ þ logð1 � e� b
P

ygi Þ ð15Þ

To derive the estimate of the parameters, we have to take the partial derivatives with respect

to α,β,γ and then equate the result to zero

dlogL
da
¼

1

loga
�
dðlogðaÞÞ

da
¼

1

loga
�
1

a
¼

1

aloga
ð16Þ

dlogL
db
¼

2ng
bg
� 2

X
ygi þ

ð� 1Þ
P

ygi
ð1 � e� b

P
gr

i Þ
¼

2n
b
� 2

X
ygi �

P
ygi

ð1 � e� b
P

ygi Þ
ð17Þ

dlogL
dg
¼

2nb
bg
þ 2log

X
yi � 2bg

X
yg� 1

i þ
e� b
P

ygi bg
P

yg� 1
i

ð1 � e� b
P

ygi Þ
ð18Þ

Eqs (16)–(18) is not in closed form. Hence it is difficult to calculate the values of the param-

eters. However, one can use the iteration procedure used in mathematics that is the Bisection

and Newton Raphson method to get the MLE.
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Renyi entropy

By definition, the Renyi entropy of the random variable Y belong to GAPW (α,β,γ) is given by

RHðyÞ ¼
1

1 � p
log
Z1

0

f pðyÞdy ð19Þ

Where f ðyÞ ¼ ae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� byg

Z1

0

f pðyÞdy ¼
Z1

0

½ae� byg

bgyg� 1e� byg � a� byg logðaÞbgyg� 1ð1 � e� bygÞe� byg �
pdy

¼

Z1

0

½ae� byg

bgyg� 1e� byg �
p
½1 � logðaÞð1 � e� bygÞ�

pdy ð20Þ

Using the expression given below

½1 � logðaÞð1 � e� bygÞ�
p
¼
X1

k¼j¼0

logðaÞkð� 1Þ
kþj
ðpCkÞð

kCjÞðe
� bygÞ

j

Hence (20) takes the following form

¼ ðbgÞ
p
Z1

0

½ae� byg yg� 1e� byg �
p
X1

k¼j¼0

logðaÞkð� 1Þ
kþj
ð

pCkÞð
kCjÞðe

� bygÞ
jdy

¼ ðbgÞ
p
X1

k¼j¼0

logðaÞkð� 1Þ
kþj
ð

pCkÞð
kCjÞ

Z1

0

½ae� byg yg� 1e� byg �
p
ðe� bygÞ

jdy ð21Þ

by solving the above expression, we get

¼ ðbgÞ
p
X1

k¼j¼0

logðaÞkð� 1Þ
kþj
ð

pCkÞð
kCjÞ

X1

n¼m¼0

ðplogðaÞÞn

n!

ð� bðpþ jþ nÞygÞm

m!

ypðg� 1Þþmgþ1

pðg � 1Þ þmgþ 1
j
1

0
ð22Þ

Replace (22) in (19), we obtained the following result for the Renyi entropy

RHðyÞ ¼
1

1 � p
log

ðbgÞ
p
X1

k¼j¼0

logðaÞkð� 1Þ
kþj
ð

pCkÞð
kCjÞ

X1

n¼m¼0

ðplogðaÞÞn

n!

ð� bðpþ jþ nÞygÞm

m!

ypðg� 1Þþmgþ1

pðg � 1Þ þmgþ 1
j
1

0

0

B
B
B
B
@

1

C
C
C
C
A

ð23Þ
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Mode

The mode of the random variable Y is defined by the following equation.

f 0ðyÞ ¼ 0

df ðyÞ
dy
¼

d
dy
ðae� byg

bgyg� 1e� byg � ae� byg logðaÞbgyg� 1ð1 � e� bygÞe� bygÞ

¼ � logðaÞbg
d
dy
ðae� byg yg� 1ð1 � e� bygÞe� bygÞ þ bg

d
dy
ðae� byg yg� 1e� bygÞ

¼ ae� byg

bgyg� 2e� 3byg
fðloga � 1Þbgyg þ ðg � logðaÞgÞ þ logðaÞ � 1ge2byg

þfðlog2
ðaÞ � blogðaÞÞbgyg þ logðaÞg � logðaÞgebyg � log2

ðaÞbgyg

" #

The more simplified form of the above expression may be written as

ae� byg

bgyg� 2e� 3byg ¼ 0 ð24Þ

Using Mathematica software, it has been observed that the density function will be maxi-

mum only at y = 0

Skewness and kurtosis

The mathematical form of the Galton Skewness and Moors kurtosis of the GAPW distribution

with three parameters are defined by the following relationship

SK ¼
Qð3=4Þ þ Qð1=4Þ � 2Qð2=4Þ

Qð3=4Þ � Qð1=4Þ
ð25Þ

KM ¼
Qð7=8Þ þ Qð3=8Þ � Qð5=8Þ � Qð1=8Þ

Qð3=4Þ � Qð1=4Þ
ð26Þ

Where Q describe different quartiles values. Table 1 illustrates the numerical description of

the Skewness and Kurtosis for different values of parameters.

Table 1. Numerical values of skewness and kurtosis.

α β γ Skewness Kurtosis

0.1 0.1 0.1 0.8743687 2.258266

0.1 0.2 0.3 0.2625882 0.9188042

0.1 0.4 0.5 0.008697689 0.9147886

0.1 0.6 0.6 -0.059749 0.9656408

0.2 0.3 0.1 0.9696736 3.511172

0.3 0.3 0.2 0.916672 2.373731

0.4 0.3 0.2 0.7812134 9.273318

0.8 0.5 0.6 -0.2128008 1.200246

0.9 0.6 1 -0.2271696 1.220157

1 1 1 -0.2618595 1.30627

https://doi.org/10.1371/journal.pone.0233080.t001
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Mean Residual Life (MRL)

The mean residual life of the gull alpha power distribution with parameters α,β,γ is define as

MRLGAPWðyÞ ¼ EðY � y=Y > yÞ ¼
1

SðY; a; b; gÞ

Z1

g

f ðt; a; b; gÞdt � y ð27Þ

where; SðY; a; b; gÞ ¼ 1 � ae� byg

ð1 � e� bygÞ and

f ðt; a;b; gÞ ¼ ae� btg

bgtg� 1e� btg � ae� btg logðaÞbgtg� 1ð1 � e� btgÞe� btg

Plugging in the above two expressions in (27), we get

¼
1

1 � ae� byg
ð1 � e� bygÞ

½

Z1

y

ae� btg

bgtg� 1e� btgdt �
Z1

y

ae� btg logðaÞbgtg� 1ð1 � e� btgÞe� btgdt� � y ð28Þ

By solving (28) finally, we obtained the following result

¼
1

1 � ae� byg
ð1 � e� bygÞ

ae� byg

logðaÞ
�

1

logðaÞ

 !

� logðaÞ
ae� byg

� 1

logðaÞ
�
ðlogðaÞe� byg � 1Þae� byg

ðlogðaÞÞ2
þ
aðlogðaÞ � a
ðlogðaÞÞ2

" #" #

� yð29Þ

Special cases

This section illustrates two special cases of the Gull Alpha Power Weibull distribution.

I. Case. γ = 1

When we put γ = 1 in (4) and (5), then it shall be referring to the CDF and PDF of the

Gull Alpha Power Exponential distribution (GAPE). The mathematical forms are

described as

FðyÞ ¼
að1 � e� byÞ

a1� e� by ; y > 0&a; b > 0 ð30Þ

f ðyÞ ¼ ae� by
be� by � ae� by logðaÞbð1 � e� byÞe� by ð31Þ

II. Case. γ = 2

If we replace γ = 2 in the expressions (4) and (5), the derived probability function will

stand for the Gull Alpha Power Rayleigh distribution (GAPR). The CDF and PDF of

GAPR are respectively given by

FðyÞ ¼
að1 � e� by2

Þ

a1� e� by2 ; y > 0&a; b > 0 ð32Þ

f ðyÞ ¼ 2ae� by2

by2� 1e� by2

� 2ae� by2

logðaÞby1ð1 � e� by2

Þe� by2

ð33Þ
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Applications

In this section, we provide two real life applications of the proposed model in which one data

set follows a non-monotonic hazard rate shape and the second data follows a monotonic haz-

ard rate shape so as to achieve the objectives and delineate efficiency of the proposed model.

The performance of the model is judged by commonly used goodness of fit measures including

Cramer-von mises (W), Anderson darling (A), Akaike information criteria (AIC), Consistent

Akaike information criteria (CAIC), Hannan and quin information criteria (HQIC), and

Bayesian information criteria (BIC). The mathematical form of these criteria is defined by

A ¼ � n �
1

n

Xn

i¼1

ð2i � 1Þ½logFðXiÞ þ logð1 � FðXn� iþ1ÞÞ�

W ¼
Xn

i¼1

FðXiÞ �
2i � 1

2n

� �2

þ
1

12n

AIC ¼ � 2Lþ 2p; AICc ¼ AICþ
2pðpþ 1Þ

n � p � 1
; CAIC ¼ � 2Lþ PflogðnÞ þ 1g

BIC ¼ PlogðnÞ � 2L; HQIC ¼ � 2Lþ 2PlogflogðnÞg:

where, L ¼ Lðĉ; yiÞ is the maximized likelihood function and yi is the given random sample, ĉ

is the maximum likelihood estimator and p is the number of parameters in the model.

As a general rule, a probability model with fewer values of these criteria should be consid-

ered the best fitted model among other probability distributions.

Data set 1: Remission time of Bladders cancer patients

The data set consists of the remission time of 128 bladder cancer patients. The data set is taken

from Aldeni and Famoye [29] with the values are as follows

0.080, 0.200, 0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400, 1.460, 1.760,

2.020, 2.020, 2.070, 2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750, 2.830,

2.870, 3.020, 3.250, 3.310, 3.360, 3.360, 3.480, 3.520, 3.570, 3.640, 3.700, 3.820, 3.880, 4.180,

4.230, 4.260, 4.330, 4.340, 4.400, 4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320, 5.320,

5.340, 5.410, 5.410, 5.490, 5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940, 6.970, 7.090,

7.260, 7.280, 7.320, 7.390, 7.590, 7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530, 8.650,

8.660, 9.020, 9.220, 9.470, 9.740, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02,

12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14,

17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01,

46.12, 79.05.

Fig 3 shows the theoretical and empirical pdf and cdf of the GAPW distribution using the

bladder cancer patient’s data and it is observed that the GAPW is the best-fitted line as com-

pared to others. Fig 4 demonstrates the Q-Q and P-P plot of the bladder cancer patient data.

The TTT plot in Fig 5 clearly shows that this data follows a non-monotonic hazard rate shapes.

Table 2 reflects the maximum likelihood estimates, standard errors, and the log-likelihood val-

ues. Table 3 defines the goodness of fit measures for the bladder cancer data. It has been

observed that the goodness of fit measures has fewer values for GAPW while analyzing the

bladder cancer data. Hence the proposed distribution provides a better fit as compared Wei-

bull exponential (W.E), exponential (E), Weibull (W), Rayleigh (R) and Algoharai inverse flex-

ible Weibull (AIFW) distribution.
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Fig 3. Theoretical and empirical Pdf and Cdf of GAPW.

https://doi.org/10.1371/journal.pone.0233080.g003

Fig 4. Theoretical and empirical Pdf and Cdf with Q-Q plot and P-P plot for GAPW.

https://doi.org/10.1371/journal.pone.0233080.g004
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Data set 2: Bank customers Data

The data set waiting time of 100 bank customers is taken from Ghitany et al. [30]. The data set

values are given below

0.8,0.8,1.3,1.5,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3,3.5,3.6,4,4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.6-

,4.7,4.7,4.8,4.9,4.9,5.0,5.3,5.5,5.7,5.7,6.1,6.2,6.2,6.2,6.3,6.7,6.9,7.1,7.1,7.1,7.1,7.4,7.6,7.7,-

8,8.2,8.6,8.6,8.6,8.8,8.8,8.9,8.9,9.5,9.6,9.7,9.8,10.7,10.9,11.0,11.0,11.1,11.2,11.2,11.5,11.9,12-

.4,12.5,12.9,13.0,13.1,13.3,13.6,13.7,13.9,14.1,15.4,15.4,17.3,17.3,18.1,18.2,18.4,18.9,19.0,19.9-

,20.6,21.3,21.4,21.9,23,27,31.6,33.1,38.5.

Fig 6 illustrates the theoretical and empirical Pdf and Cdf of the GAPW distribution using the

100 bank customer’s data. The graph clearly shows that the red line is the best-fitted line to theo-

retical data. Fig 7 displays the Q-Q and P-P plot of the bank customer’s data. The TTT plot in Fig

Fig 5. TTT plot of the bladder cancer patient data.

https://doi.org/10.1371/journal.pone.0233080.g005

Table 2. Maximum likelihood estimates and their standard errors.

Model Mle Standard error -log(likelihood)

GAPW 0.00590119 0.79751413 0.53355796 0.005280265 0.121546525 0.046158047

409.9908

W.E 3.95810505 0.01796843 0.85819193 1.214089581 0.004666546 0.059280045

419.8998

W 0.09438292 1.04576466 0.01912624 0.06742473

414.0874

Exp 0.1067695 0.009436355 414.3419

Rayleigh 0.005079773 0.0004307331 491.2659

AIFW 0.1677404 0.1231948 0.02508775 0.01045528 451.0704

https://doi.org/10.1371/journal.pone.0233080.t002
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8 clearly shows that this data follows a monotonic hazard rate shapes. Table 4 gives the maximum

likelihood estimates of the unknown parameters of GAPW including the standard errors, and the

log-likelihood values. The values given in Table 5 declared that GAPW leads to a better fit than

other versions of the Weibull distribution like Weibull exponential (W.E), exponential (E), Wei-

bull (W), Rayleigh (R) and Algoharai inverse flexible Weibull (AIFW) distribution.

Simulations

To perform simulations an expression (9) was used to generate artificial data from the GAPW

distribution. The simulations are performed 100 times with a different set of parameters with

different sample of size n. The maximum likelihood estimates and their standard errors are

given in Table 6. The tabulated values clearly show as we increase the sample size, both the ml

estimates and the standard errors are decreases. The general formula for computing the mean

square error and bias are as follows

MSE ¼
1

W

XW

i¼1

ðai � aÞ
2

Bias ¼
1

W

XW

i¼1

ðai � aÞ

Table 3. Goodness of fit measures of the GAPW for bladder cancer data.

Models W A AIC CAIC BIC HQIC

GAPW 0.02533431 0.1608187 825.9815 826.1751 834.5376 829.4579

W.E 0.2145276 1.282891 845.7996 845.9931 854.3557 849.276

W 0.1308177 0.7832353 832.1747 832.2707 837.8788 834.4923

Exp 0.1192893 0.7159703 830.6838 830.7155 833.5358 831.8426

Rayleigh 0.4669078 2.732901 984.5318 984.5635 987.3838 985.6906

AIFW 0.5735798 3.457475 906.1409 906.2369 911.8449 908.4585

https://doi.org/10.1371/journal.pone.0233080.t003

Fig 6. Theoretical and empirical Pdf and Cdf of GAPW.

https://doi.org/10.1371/journal.pone.0233080.g006

PLOS ONE A Gull Alpha Power Weibull distribution with applications to real and simulated data

PLOS ONE | https://doi.org/10.1371/journal.pone.0233080 June 12, 2020 14 / 19

https://doi.org/10.1371/journal.pone.0233080.t003
https://doi.org/10.1371/journal.pone.0233080.g006
https://doi.org/10.1371/journal.pone.0233080


Fig 7. Theoretical and empirical Pdf and Cdf with Q-Q plot and P-P plot for GAPW.

https://doi.org/10.1371/journal.pone.0233080.g007

Fig 8. TTT plot of bank customers data.

https://doi.org/10.1371/journal.pone.0233080.g008
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Conclusion

In this paper, we produced a new generator called Gull Alpha Power Family of distributions or

in short GAPF. A special case of this family was derived by employing the CDF of the Weibull

distribution as a baseline distribution. The special case is known as Gull Alpha Power Weibull

distribution (GAPW). Various statistical properties have been discussed in addition to the

parameter estimation using the maximum likelihood method. In future, a researcher may con-

duct a study on estimation of the parameters of the proposed model under Bayesian paradigm

by using informative and non-informative priors. For a detailed discussion on Bayesian esti-

mation we refer to see [31–34]. Furthermore, we have explored the special cases of GAPW.

The significance of the proposed model is justified by using two real data sets as well as the

simulated data. The TTT plot of the bladder cancer patient’s data clearly demonstrates that

Table 4. Maximum likelihood estimates and their standard errors.

Model Mle Standard error -log(likelihood)

GAPW 0.004584114 0.540116500 0.679696285 0.007821438 0.164012222 0.088528859 317.4891

W.E 3.97641055 0.02509669 1.24349114 4.16205665 0.01545783 0.15095850 320.9662

W 0.02971531 1.46144250 0.008598382 0.102215074 318.745

Exp 0.1012424 0.01012326 329.0209

Rayleigh 0.006676124 0.0006522215 329.2404

AIFW 1.6423171 0.1153154 0.17122546 0.01167334 330.7856

https://doi.org/10.1371/journal.pone.0233080.t004

Table 5. Goodness of fit measures of the GAPW for bank customers data.

Model W A AIC CAIC BIC HQIC

GAPW 0.01939983 0.1355293 640.9783 641.2283 648.7938 644.1413

W.E 0.112468 0.7070021 647.9323 648.1823 655.7479 651.0954

W 0.06265989 0.3945532 641.4899 641.6136 646.7003 643.5986

Exp 0.02703835 0.1790246 660.0418 660.0826 662.6469 661.0961

Rayleigh 0.1265804 0.7863305 660.4807 660.5216 663.0859 661.5351

AIFW 0.1703407 1.219407 665.5711 665.6948 670.7815 667.6798

https://doi.org/10.1371/journal.pone.0233080.t005

Table 6. Maximum likelihood Estimates and their standard errors.

Actual values ML Estimate Standard deviations

α β γ n α β γ α β γ

30 52.356569 23.944706 -1.425906 9.2277595 7.2776554 0.1274975

50 50.95129 24.95536 -1.43942 6.9704413 6.0708245 0.1017499

0.009, 0.007, 2.5 60 50.664975 26.246471 -1.466574 6.31080601 5.72063698 0.09179273

0.002, 0.03, 2.4 30 48.053781 30.374984 2.557561 8.5074528 11.2457262 0.2579958

40 54.455222 38.392647 -2.634047 8.3220182 10.0698906 0.1794368

50 50.95129 24.95536 -1.43942 6.9704413 6.0708245 0.1017499

0.004, 0.04, 2.4 15 43.061076 27.780158 -2.690999 10.4921960 12.5321045 0.3456288

30 44.815687 32.610212 -2.716042 7.8711814 11.2785370 0.2546263

60 58.716823 26.033329 -2.651458 7.4268484 6.0626125 0.1738104

0.009, 0.05 3.5 30 74.154700 38.831954 -4.727522 13.5628738 14.8703835 0.4515338

45 77.262356 35.034728 -4.703549 11.5691089 10.7248896 0.3635661

60 63.771730 37.754394 -4.728007 8.1322331 10.1954503 0.3217287

https://doi.org/10.1371/journal.pone.0233080.t006
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this data follows a non-monotonic hazard rate shape. While the TTT plot of the bank custom-

ers data follows a monotonic hazard rate shape. It has been observed that the proposed model

performs well in both the non-monotonic and a monotonic hazard rate shapes as compared to

the Weibull (W), Weibull Exponential (W.E), Exponential (E), Rayleigh (R), and Algoharai

Inverse Flexible Weibull (AIFW) distribution.
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